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Abstract—Embodied AI systems demand real-time, energy-
efficient computation, often relying on heterogeneous accelerators
such as GPGPUs and NPUs. However, the use of proprietary com-
munication libraries introduces interoperability barriers, limiting
collaboration and resource utilization. We present KAITIAN, a
distributed communication framework that integrates vendor-
specific libraries with general-purpose communication layers,
combined with a load-adaptive scheduling mechanism for effi-
cient task allocation. Implemented within PyTorch and evaluated
on NVIDIA GPUs and Cambricon MLUs, KAITIAN improves
resource utilization, enables scalable distributed training, and
accelerates training time by up to 42% with minimal communi-
cation overhead.

I. INTRODUCTION

Embodied intelligent systems, such as autonomous robots,
operate in dynamic environments, requiring real-time per-
ception, decision-making, and control [1]. To meet these
demands, they increasingly integrate heterogeneous acceler-
ators—GPGPUs for parallel computing, NPUs for deep learn-
ing, and domain-specific accelerators for specialized tasks.
However, proprietary communication libraries across different
vendors are typically incompatible, hindering collaborative
computation across heterogeneous devices. This leads to re-
source underutilization and communication bottlenecks during
distributed training.

To address these challenges, we propose KAITIAN, a dis-
tributed communication framework that seamlessly integrates
proprietary and general-purpose libraries, coupled with a load-
balancing mechanism to optimize task allocation. By enabling
efficient cross-device communication, KAITIAN effectively
harnesses heterogeneous computing resources for embodied
AI applications.

II. KAITIAN FRAMEWORK DESIGN

A key obstacle in heterogeneous computing is that main-
stream deep learning frameworks, such as PyTorch [2], are
designed around a single communication backend, limiting
their ability to natively orchestrate multiple vendor-specific
libraries within the same training job. This constraint hampers
the collaborative use of heterogeneous accelerators.

KAITIAN addresses this challenge through a pluggable
extension to PyTorch that seamlessly integrates diverse com-
munication backends into a unified framework. Its design
follows two key principles:

• Intra-Group Communication: Within homogeneous ac-
celerator groups (e.g., GPUs or MLUs), KAITIAN lever-
ages vendor-optimized libraries (such as NCCL and
CNCL) to maximize communication efficiency.

• Inter-Group Communication: Between heterogeneous
groups, KAITIAN relays data through host CPU memory
using Gloo, a general-purpose communication layer, to
enable cross-accelerator collaboration.

A. Hybrid Communication Architecture
As illustrated in Figure 1, KAITIAN organizes processes

into containers based on device type. It then applies a hybrid
strategy:

Intra-Group Communication employs fast, device-
specific libraries for local synchronization within each con-
tainer, achieving near-native performance. In contrast, Inter-
Group Communication routes tensors through CPU host
memory: data is copied from the source accelerator to host
memory, exchanged across containers via Gloo, and trans-
ferred to the target accelerator. Although this relay incurs
additional memory copies, it enables otherwise incompatible
devices to collaborate within a unified training workflow.

By decoupling intra-group efficiency from inter-group in-
teroperability, KAITIAN enables scalable distributed training
across diverse hardware, without sacrificing communication
performance within homogeneous subgroups.

Fig. 1. Architecture of the KAITIAN Hybrid Communication Framework.

B. Load-Adaptive Mechanism
Heterogeneous accelerators often show performance dis-

parities, limiting system efficiency in synchronous tasks like
data-parallel training. KAITIAN’s load-adaptive mechanism
addresses this:



• Benchmarking: A program evaluates each accelerator’s
performance before tasks. The fastest device’s runtime
sets the reference (score = 1); others are scored as
scorei = timemin/timei.

• Dynamic Allocation: We define data allocation as:
batch_sizei = original_batch_size×scorei, which adjusts
based on scores, ensuring uniform computation times
across devices.

This balances loads, maximizing throughput for robotic
applications needing stable performance.

III. IMPLEMENTATION AND EVALUATION

A. Implementation Details

We implement KAITIAN as a extension PyTorch com-
munication backend, overriding DistributedSampler for load
adaptation. Command-line tools manage tasks. Docker ensures
environment isolation, with Redis for discovery and state
synchronization.

B. Experimental Setup

• Hardware: A heterogeneous server equipped with 2
NVIDIA GTX 1080 GPUs, 2 Cambricon MLU370-S4
accelerators, an AMD EPYC 7763 CPU, and 64 GB of
RAM.

• Software: Ubuntu 20.04, Docker, NVIDIA Driver and
CUDA Toolkit, Cambricon Driver and CNToolkit.

• Task: Image classification on CIFAR-10 [3] using Mo-
bileNetV2.

C. Evaluation Results

We evaluate KAITIAN under the experimental setup de-
scribed above, using NCCL and CNCL as baseline systems.
The evaluation focuses on training time and model accuracy.

Fig. 2. KAITIAN Training Efficiency and Accuracy Comparison.

Figure 2 compares training time and accuracy across different
accelerator configurations. KAITIAN, using 2 GPUs and 2
MLUs (2G+2M), achieved the fastest training time at 137.4
seconds, representing a 42% improvement over the GPU-
only NCCL baseline (236.4 seconds) and a 17% improvement
over the MLU-only CNCL baseline (166.3 seconds). Accuracy
remained comparable across all configurations, with 83.4%

for 2G+2M versus 85.3% for 2G and 85.5% for 2M, indicat-
ing that KAITIAN’s heterogeneous communication introduces
minimal accuracy degradation.

Fig. 3. Load Adaptive Mechanism. Fig. 4. Communication Overhead.

Based on the dynamic load adjustment method introduced
in the Load-Adaptive Mechanism section, we evaluate the
effect of load balancing strategies on heterogeneous training
efficiency, as shown in Figure 3. Different device utilization
levels significantly impact system performance. By dynami-
cally adjusting the load during training, KAITIAN is able to
converge to the optimal strategy B, achieving balanced GPU
and MLU utilizations and minimizing overall training time.

Figure 4 presents the communication overhead of KAITIAN
compared to native libraries in homogeneous environments.
KAITIAN introduced minimal overhead, with a training time
of 232.4 seconds versus 226.1 seconds for NCCL on 2 GPUs
(2.8%), and 161.3 seconds versus 154.6 seconds for CNCL on
2 MLUs (4.3%). These results demonstrate the efficiency of
KAITIAN’s inter-group communication strategy.

IV. CONCLUSION

KAITIAN enables efficient heterogeneous computing for
embodied AI by integrating specialized and general-purpose
communication libraries with a load-adaptive mechanism. It
maximizes resource utilization, supports complex model de-
ployment, and accelerates algorithm development on diverse
accelerators like GPUs and MLUs. Evaluations show up to
42% faster training with minimal overhead and strong scalabil-
ity. Applicable to edge robotic platforms, KAITIAN’s future
includes porting to robotic hardware and benchmarking on
tasks like SLAM and grasping. Source code is available at
https://github.com/jklincn/kaitian.
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